Preventing AF-related stroke

Providing information, support and access to established, new or innovative treatments for atrial fibrillation

www.afa.org.uk
Anticoagulation Medications used to thin the blood and prevent blood clots from forming

Antiplatelets Medications which help prevent platelets from sticking together

Atrial fibrillation (AF) Irregular heart rhythm

CHA2DS2-VASc score A quick method to calculate individual risk of AF-related stroke and the need for anticoagulation

Emboli The lodging of an embolism, a blockage-causing piece of material, inside a blood vessel, reducing or completely blocking the blood flow to an organ or a limb

Fibrin A protein that is formed when blood clot which is vital in holding the clot together

International normalised ratio (INR) The test used to measure the blood’s clotting capability

Ischaemia When the blood supply is restricted or cut off from an organ, usually caused by a blood vessel becoming narrowed or blocked

Ischaemic stroke Caused by a blocked vessel in the brain preventing blood flow to that part of the brain. Ischaemic strokes are the most common type of stroke

Non-vitamin K antagonist oral anticoagulants (NOACs) Anticoagulant therapies that work in a different way to VKAs to prevent the blood from clotting

Contents

Why do I need to take anticoagulation therapy?

What anticoagulation options are available?

Vitamin K antagonists (VKAs)
Non-Vitamin K antagonist oral anticoagulants (NOACs)
Apixaban
Rivaroxaban
Dabigatran
Edoxaban
Heparin

Are there any drugs I should not take with my anticoagulants?

Before a procedure

Risk of bleeding whilst taking anticoagulants
What to do if you notice bleeding
Minimising bleeding risks

How long do I need to take anticoagulants?

My AF symptoms have improved – can I stop taking anticoagulants?
Transcatheter Closure of the Left Atrial Appendage or Left Atrial Appendage Occlusion (LAAO)

What happens after the procedure?

What are the benefits of the LAA closure?

Oral Refers to the way you take medicine, by mouth

Platelets Small structures which stick to fibrin to make the blood clot

Reversal agent (often referred to as an ‘antidote’) Works to reverse the effects of a medicine.

Stroke Is also known as cerebrovascular accident (CVA), a serious, life-threatening medical condition that occurs when the blood supply to part of the brain is cut off

Vitamin K A fat soluble vitamin essential for the formation of several proteins involved in the regulation of blood clotting. Vitamin K is consumed in the body from food intake

Vitamin K antagonists (VKAs) Anticoagulant therapies that affect how the liver uses vitamin K to form proteins which regulate blood clotting. Warfarin is the most commonly used VKA
Why do I need to take anticoagulation therapy?

If you have been diagnosed with Atrial Fibrillation (AF), there are changes in the upper chambers of the heart (atria) which means they no longer contract properly. Blood within the atria can slow down and stagnate, making the chances of a blood clot forming more likely. Some of these changes can be seen on a heart scan (an echocardiogram) or through other investigations, but others are not easily detected.

For everyone with AF, these changes mean the blood is more likely to form small clots in the heart. If these clots move out of the heart and into the general circulation then they can block the blood vessels that supply the organs, such as the brain, and cause a stroke.

AF increases the risk of stroke by 500%, a five-fold increase. It is imperative that an AF patient classed as ‘at risk’ is prescribed anticoagulant medication to inhibit the coagulation of the blood. This reduces the risk of clots and stroke. You can check your personal AF related stroke risk using the CHA2DS2-VASc scoring system below.

<table>
<thead>
<tr>
<th>CHA2DS2-VASc scoring criteria to determine need for blood thinning based on AF-related stroke risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestive heart disease</td>
</tr>
<tr>
<td>Hypertension</td>
</tr>
<tr>
<td>Age (75 years +)</td>
</tr>
<tr>
<td>Diabetes</td>
</tr>
<tr>
<td>Stroke or previous TIA</td>
</tr>
<tr>
<td>Vascular heart disease</td>
</tr>
<tr>
<td>Age (65-74 yrs)</td>
</tr>
<tr>
<td>Sex (female)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>score</th>
<th>risk level</th>
<th>necessity for anticoagulant</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>low risk</td>
<td>anticoagulant not suggested</td>
</tr>
<tr>
<td>1</td>
<td>at risk</td>
<td>anticoagulant suggested dependent on personal preferences</td>
</tr>
<tr>
<td>2+</td>
<td>at risk</td>
<td></td>
</tr>
</tbody>
</table>

Clots are made up of two main components, platelets and fibrin.

Platelets are small sticky cells that exist in large numbers in the blood. They are involved in forming scabs or suddenly sticking together in coronary arteries as a cause of heart attacks. They are beneficial when you cut yourself in stopping the
bleeding, but if working incorrectly, or present in too high a number, then your blood becomes clumpy and clots form when they should not.

The clotting of the blood is a complex process as blood should clot rapidly when required, but also remain fluid at other times. The process is referred to as the ‘clotting cascade’ by clinicians. This term is used to explain how the stimulation to form a clot triggers a series of steps before producing the blood enzyme thrombin. The enzyme thrombin changes the soluble protein fibrinogen to the insoluble protein fibrin. Clots are made of fibrin.

Forming clots at the wrong time is not good for the body. To prevent the fibrinogen being stimulated at the wrong time, there is a complex system that needs to be triggered to cause the fibrinogen to be converted into fibrin. This process is called the ‘clotting cascade’.

Antiplatelet drugs such as aspirin and clopidogrel, stop the activation of platelets. Although antiplatelet medication has been used for many years to prevent stroke, as of 2014, the National Institute for Health and Care Excellence (NICE) no longer recommends the use of aspirin for AF-related stroke prevention.
What anticoagulation options are available?

Anticoagulants will not reduce or take away any symptoms of AF as they do not treat AF. Anticoagulants are prescribed to prevent blood clots from forming inside your heart and to reduce your risk of having an AF-related stroke.

It is important to understand the effect of an anticoagulant in your body to ensure you receive the best therapy to suit you. It is also very important that you take your anticoagulant as prescribed by your doctor whether or not you are experiencing symptoms of AF.

Thanks to a number of medical advances, there are more anticoagulant options available than there were a few years ago. They all help to prevent the risk of AF-related stroke by slowing down and reducing the formation of blood clots. Your doctor will work with you to find the right therapy, taking into account your individual risk of AF-related stroke, any other medicines that you might be taking and your medical history.

Anticoagulant therapy options currently available for reducing the risk of AF-related stroke can be divided into two groups; Vitamin K antagonists (VKAs) and Non-vitamin K antagonist oral anticoagulants (NOACs).

Vitamin K antagonists (VKAs)

VKAs affect how the liver uses Vitamin K to form proteins which regulate blood clotting. VKA therapy takes a few days to have an effect and it takes a few days for the effect to wear off when treatment is stopped, unless an antidote is given. Vitamin K is consumed in the body from food intake and is essential for the functioning of several proteins involved in the regulation of blood clotting. Vitamin K is found in many everyday foods, particularly green leafy vegetables.

The most commonly used VKA is warfarin. VKAs have been used as anticoagulants for more than 60 years. Two out of three AF-related strokes are prevented with warfarin compared to those not taking anticoagulant therapy. VKAs work by interfering with how your liver uses vitamin K. The effectiveness
of VKAs is affected by the amount of vitamin K in your diet. If your diet is reasonably consistent, then the amount of vitamin K in your body will be matched by the warfarin dose. If the amount of vitamin K in your diet changes it can affect the ability of the VKA to prevent clot formation and the dose will need to be adjusted. Taking other medicines and consuming alcohol can also have an impact on how VKA works in the body.

Regular monitoring with blood tests is needed with VKAs by taking a blood sample from a vein. The specific test used to measure the blood’s clotting capability is called the INR (International Normalised Ratio). By measuring the INR, anticoagulant clinics and healthcare teams can optimise the amount of VKA therapy given to a patient. Too little warfarin reduces the therapy’s ability to prevent an AF-related stroke whereas too much warfarin can put you at increased risk of bleeding. The dose of warfarin might need to be adjusted to ensure your INR remains within the target required for your condition. It might take a little while to get the dose right for you and initially your monitoring will be frequent. Once your INR is more stabilised your monitoring can become a little less frequent however it will still need to be done on a regular basis.

Regular monitoring can be done at your doctor’s surgery or there may be the possibility for you to self-monitor. Self-testing involves the use of a hand-held device to measure the INR in a drop of blood, rather like monitoring blood sugar levels in diabetes. This testing can be undertaken in the comfort of your own home, at work or while away on business or holiday.
Non-vitamin K antagonist oral anticoagulants (NOACs)

NOACs work in a different way to VKAs to prevent the blood from clotting. There are four NOACs currently available in Europe: apixaban (Eliquis), dabigatran (Pradaxa), edoxaban (Lixiana), and rivaroxaban (Xarelto).

NOACs are proven to be safer than VKAs while being as effective or even more so. NOACs do not require monitoring with regular blood tests. Unlike VKAs, there are no interactions with foods. NOACs have fewer interactions with other medicine compared with VKAs and they are given at a fixed dose. NOACs start to work more quickly than VKAs and the effect of NOACs wears off quickly too if therapy is stopped.

Apixaban:
In February 2013, apixaban was approved by The National Institute for Health and Care Excellence (NICE) for use within the UK. It is prescribed for reducing AF-related stroke risk in people with AF that is not caused by a heart valve problem. Apixaban is a medication that has a direct effect on the enzyme called ‘Ten A’, often written ‘Xa’. This is part of the clotting cascade that leads to the soluble fibrinogen being converted to the fibrous fibrin, then causing clots (thrombus). This controlled blocking of Xa stops the blood clotting as quickly so helps to prevent the formation of clots in the heart that cause strokes.
The recommended dose of apixaban is 5mg twice daily. If you are over 80, have low body weight, or impaired kidney function, you may be offered a lower dose of 2.5mg twice daily.

You should inform your doctor and dentist that you take apixaban before having any operation or procedure, or before changing or starting other medications including herbal remedies.

Apixaban is rapidly metabolised by the body, requiring a twice daily dose.

In clinical trials, apixaban was shown to be at least three times more effective than aspirin in preventing AF-related stroke. There are no known lifestyle issues like those that apply to warfarin, and apixaban does not involve frequent blood monitoring.

There are few identified interactions between apixaban and other medications. Trials have suggested that there may be fewer bleeds in the brain (intracranial haemorrhages) and fewer fatal bleeds when compared with warfarin.

Apixaban’s anticoagulation effect is not currently reversible. Its effects on the blood’s clotting do reduce over a few hours (this is why it is taken twice daily) so a bleed would not be indefinite. If you are concerned about a bleeding event then you should attend an A&E department as they may need to assist.

Rivaroxaban:

In May 2012, NICE published a recommendation for rivaroxaban as a possible treatment to reduce the risk of stroke in AF patients who are already assessed as being at increased risk of stroke and systemic embolism.

Rivaroxaban interferes with Factor Xa that is involved in the development of blood clots. Unlike warfarin, it does not require regular INR monitoring.
Rivaroxaban is licensed in the UK for use in non-valvular AF patients to reduce the increased risk of stroke caused by AF. Rivaroxaban is approved for other indications including reducing the risk of clots in adults who have hip or knee replacement surgery, and treating thrombosis due to a clot formation in the body (e.g. the leg), a DVT (deep vein thrombosis).

For stroke prevention in AF, rivaroxaban is administered at a fixed dose of 20mg once daily, although the dose may need to be reduced if kidney function is impaired. If your kidney function is impaired, you have low body weight, or you are taking other medication that affects the amount of rivaroxaban required to be effective, you may be offered a lower dose of 15mg once daily. Rivaroxaban should be taken once a day with your main meal so that it will be completely absorbed.

Dabigatran:
NICE approved the use of dabigatran in March 2012 for the prevention of stroke and systemic blood clots in patients with AF. Dabigatran is a medication that has a direct effect on the enzyme thrombin - it is called a direct thrombin inhibitor. It has its effects on the final step of the ‘clotting cascade’.

Dabigatran is specifically licensed in patients with non-valvular AF without underlying heart valve disease, who have at least one or more risk factors.

It is also licensed for the treatment of deep vein thrombosis and pulmonary embolism, and as a preventive measure for these conditions. Unlike warfarin, dabigatran doesn’t require regular blood tests to determine the dose. Dabigatran is also used in medical practice to reduce the risk of clots forming after orthopaedic surgery, such as a hip or knee replacement.

The recommended dose of dabigatran is 150mg twice daily. If you are over 80, have low body weight, or impaired kidney function, you may be offered a lower dose of 110mg twice daily. Unlike warfarin, dabigatran is rapidly metabolised by the body, requiring a twice daily dose. If a tablet is missed or overlooked then it should be taken as soon as possible after the mistake is noticed, unless it is
almost time for your next dose. Dabigatran requires acidic surroundings to help be absorbed, which is why you may find it causes indigestion problems. You are advised to swallow the capsules whole with a glass of water.

In December 2015, idarucizumab (Praxbind); a dabigatran-specific reversal agent was launched in the UK for emergency surgery or urgent procedures; and in uncontrolled bleeding. The use of Praxbind is restricted to hospital use only.

Edoxaban:

Edoxaban is an anticoagulant drug that helps to reduce the risk of blood from clotting inappropriately. It does this by interfering with a substance in the body (Factor Xa, ‘ten A’) that is involved in the development of blood clots. Unlike warfarin, it does not require regular INR monitoring.

Edoxaban is licensed in the UK for use in nonvalvular AF patients to reduce the increased risk of stroke caused by AF. It is also approved for other indications specifically treatment and prevention of deep vein thrombosis (DVT) and pulmonary embolism which is a blood clot in the lungs.

The recommended dose of edoxaban is 60 mg once daily and should be swallowed preferably with water. It can be taken with or without food. If your kidney function is impaired, you have low body weight, or you are taking other medication that affects the amount of edoxaban required to be effective, you may be offered a lower dose of 30mg once daily. Talk to your doctor who will advise on the best dose for you.

The effectiveness and safety of edoxaban was assessed in the largest and longest trial with any novel oral anticoagulant in patients with AF performed to date. The trial was conducted in 21,105 patients and showed that edoxaban had similar efficacy to warfarin for stroke prevention.
Heparin:
Heparin is an injectable anticoagulant used in hospitals and other clinical environments to rapidly ‘thin’ the blood. It provides protection from AF-related blood clots which may cause a stroke, but has uses in other clinical situations as well such as pulmonary embolism, valvular heart disease and deep vein thrombosis. It has a rapid onset of action combined with a shorter half-life compared to warfarin. For this reason, it is often used so that perioperative patients, including those who may have been asked to discontinue their normal oral anticoagulant, spend as little time as possible unprotected from clot formation.

Are there any drugs I should not take with my anticoagulant?

Do not start any new medicine (prescribed and/or over the counter), supplements such as vitamins or herbal remedies without first checking with your healthcare provider or pharmacist.

Each anticoagulant is different so it is important to ask your doctor or pharmacist in relation to the anticoagulant you are taking. VKAs such as warfarin interact with other medicines more than the NOACs.

Before a Procedure:

Patients should be guided by their clinicians as to if, and when to stop their usual oral anticoagulant, and if heparin is required to provide anticoagulant cover before, during, and after their procedure, and in what form it should be given. Sometimes, those already on anticoagulation may be asked to discontinue this temporarily for a few days before an invasive procedure, surgery, an exploratory investigation like a colonoscopy, or a catheter ablation. For people on warfarin, their international normalised ration (INR) will typically drop from 2.5 to about 1.5 after about three days. However, many centres perform cardiac catheter ablations with patients continuing to take their warfarin.
Anticoagulants do not cause bleeding. Bleeding can occur from an injury or can develop internally, for example in the stomach or gut. The role of anticoagulants is to help prevent potentially dangerous clots from forming in your body, so you may have an increased risk of bleeding whilst taking it. The risk of major bleeding in people taking anticoagulants is low and can affect about 3 in 100 people a year. If you experience a major bleed (with severe blood loss and/or symptoms requiring treatment in hospital) and you are on an anticoagulant, it can be treated successfully in approximately 90% of cases.

It is very important to inform doctors and dentists that you take an anticoagulant before starting any new medication or before having a procedure or operation.

What to do if you notice bleeding:

Speak to your doctor immediately if you experience any of the following signs of bleeding:

- Bruising or bleeding under the skin
- Nose bleeds or cuts that take a long time to stop bleeding
- Red or dark brown urine
- Coughing up or vomiting blood or ground coffee-like material
- Red or black stools
- Bleeding gums
- Bleeding that does not stop by itself
- Abnormally heavy periods

Bleeding is not always obvious. If you experience any side-effects talk to your doctor or pharmacist. It is important to not stop taking your anticoagulants before speaking to them first.
Minimising bleeding risks

There are things to keep in mind to help you minimise the risk of bleeding if you are on an anticoagulant: This is called HAS-BLED system which can be used to estimate the risk of bleeds.

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Hypertension (high blood pressure)</td>
</tr>
<tr>
<td>A</td>
<td>Abnormal renal and liver function</td>
</tr>
<tr>
<td>S</td>
<td>Stroke and TIA</td>
</tr>
<tr>
<td>B</td>
<td>Bleeding</td>
</tr>
<tr>
<td>L</td>
<td>Labile INRs</td>
</tr>
<tr>
<td>E</td>
<td>Elderly (e.g. age is over 65 years)</td>
</tr>
<tr>
<td>D</td>
<td>Drugs or alcohol</td>
</tr>
</tbody>
</table>

A HAS-BLED score of three or more indicates ‘high risk’. High risk is not necessarily a reason to deny offering oral anticoagulants, neither is a previous intracranial haemorrhage (ICH), the risk of which decreases with time. The risk of ischaemic stroke from not being prescribed oral anticoagulants is likely to outweigh the risk of ICH from taking them.

How long do I need to take anticoagulants?

The medicines prescribed are intended to provide you with ongoing protection against the risk of AF-related stroke but they cannot stop your risk of AF-related stroke. Therefore, you should expect to continue anticoagulation therapy indefinitely unless your doctor changes or recommends another form of therapy.
My AF symptoms have improved. Can I stop taking my anticoagulant?

Never stop your anticoagulant therapy without having consulted your doctor as this could put you at risk of having an AF-related stroke. If you wish to stop taking your medicine, please speak to a doctor first to discuss your reasons and to agree the best course of action for you.

Remember that some people do not have any symptoms of AF, yet the risk of AF-related stroke is still there. Anticoagulant therapy should be taken continuously, independent of any obvious AF symptoms.
Transcatheter Closure of the Left Atrial Appendage or Left Atrial Appendage Occlusion (LAAO)

Unfortunately, some patients at high risk of stroke are either unable or unwilling to take anticoagulants because of associated risks, or side effects. An alternative to medication for patients with AF at high risk of stroke is to close off the appendage with a medical closure device (see Figure 2).

The device is designed to close the left atrial appendage (which is known to be the main source of blood clots in patients with AF), preventing clots from forming in the LAA, or breaking free from it and travelling to the brain.

Transcatheter closure of the LAA is carried out in a cardiac catheterisation laboratory, a specially equipped cardiology room where patients with heart rhythm disorders are examined and treated, or in an electrophysiology laboratory. The procedure lasts about 45-90 minutes. The procedure is usually done under general anaesthesia (but may also be done under sedation in some instances).

During the procedure, a cardiac ultrasound (echocardiogram) examination is undertaken (to get clear pictures of the heart) by placing a probe in the oesophagus.
A small cut (or incision) is made in the groin and through this opening a small plastic tube (catheter) is inserted into a vein in the leg. This catheter contains the compressed umbrella shaped device which is used to close the opening of the left atrial appendage.

Using X-rays and ultrasound images, the catheter is guided into the heart. The umbrella-like device is then passed through the catheter and into position within the LAA. As the compressed device is pushed from the end of the catheter tip it expands, thereby blocking the mouth of the left atrial appendage (see Figure 3).

The patient may need to return to their doctor for periodic follow-up visits over the next year. The doctor will also advise the patient when normal daily activities can be resumed. Typically all strenuous activity should be avoided for one month following the procedure. If the patient experiences shortness of breath or chest pain, they should seek medical help immediately.
What happens after the procedure?

Recovery following the procedure will take about 24 hours. After recovery from anaesthesia and with adequate bed rest the patient should be able to sit up and walk around. Before leaving the hospital, tests such as an echocardiogram (ultrasound scan of the heart) may be performed to make sure the device is still positioned correctly. As the procedure is minimally invasive, the recovery process is likely to be quick and easy. There may be an adhesive plaster used in the groin where the catheter was inserted. The patient may also have a sore throat due to the use of imaging probe (transoesophageal echo).

What are the benefits of the LAA closure?

The main benefit of this procedure is that it potentially eliminates the need to take anticoagulants. In the majority of patients who undergo the procedure, warfarin is continued for a minimum period of six to eight weeks post procedure so as to allow time for the implanted device to bed in. During this time the body will form a new layer of natural tissue over the device, sealing it into place.
A stroke can affect the way the body works

- Memory, concentration, emotion
- Vision
- Swallowing
- Mobility
- Facial weakness
- Speech
- Bladder/bowel control

All strokes, including AF-related strokes, can cause life changing, disabling effects to your body and mind and greatly impact everyday life. Those affected by an AF-related stroke may not be able to look after themselves and interact as they did before the stroke, so family and friends are usually affected too. Strokes, including AF-related strokes, can also be life threatening.

It is therefore important to take anticoagulation medication as prescribed if you are considered at risk by your GP or consultant.

If you have any questions or concerns regarding anticoagulants, please contact AF Association on info@afa.org.uk or 01789 867502
Providing information, support and access to established, new or innovative treatments for atrial fibrillation

Please remember that this publication provides general guidelines only. Individuals should always discuss their condition with a healthcare professional.

AF Association would like to thank all those who helped in the development and review of this publication.

Trustees:
Prof. A John Camm
Mrs Jayne Mudd
Prof. Richard Schilling
Dr Matthew Fay

AF Association Medical Advisory Committee:
Dr Adam Fitzpatrick
Dr Andrew Grace
Prof. Gregory YH Lip
Mrs Angela Griffiths
Dr Derek Todd
Mrs Sharron Gordon

Founder & CEO:
Trudie Lobban MBE